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Viscosity estimates for strongly coupled Yukawa systems

M. S. Murillo
Plasma Physics Group, MS B259, Applied Physics Division, Los Alamos National Laboratory, Los Alamos, New Mexico 875

~Received 6 March 2000!

An analytic form for the shear viscosity of a Yukawa system, in terms of the known result for the one-
component plasma, is given by establishing an analytic correspondence between the Yukawa and one-
component plasma systems. The correspondence is found by ensuring that the Yukawa system and the refer-
ence one-component plasma have identical effective hard-sphere packing fractions, as determined by the
Gibbs-Bogolyubov inequality. The resulting prediction for the freezing transition is compared with known
simulation results. These results are useful for describing dynamical properties of Yukawa systems, and the
method can be easily generalized to mixtures.

PACS number~s!: 52.25.Ub, 52.25.Zb, 52.25.Fi
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I. INTRODUCTION

The strongly coupled, screened Coulomb system has
tracted significant attention recently due to the relative e
of experimentally producing and diagnosing dilute system
Strongly coupled Coulomb systems are Coulomb syste
with an average potential energy that exceeds the ave
kinetic energy. Strong coupling is typically characterized
the Coulomb coupling parameterG5bQ2/a, whereQ is the
charge,a5(3/4pn)21/3 is the ion-sphere radius in terms o
the particle densityn, andb51/T is the inverse temperature
Dusty ~colloidal! plasmas have begun to elucidate ma
properties of such systems@1#. Dusty plasmas are norma
plasmas that achieve strong coupling with micron-sized
purities that can acquire;105 elementary charges. Recentl
ultracold strongly coupled plasmas, as created by ionizin
dilute cold atomic gas, have been produced@2#. These plas-
mas show great promise for studying strongly coupled C
lomb systems over a wide parameter range.

Screened Coulomb systems are frequently modeled
the Yukawa ~Y! interparticle interaction~in temperature
units!

buY~r !5
G

r
e2kr , ~1!

whereG measures the strength of the interaction andk mea-
sures the strength of the screening.~All lengths are in units
of a.! This model, which results from a linear treatment
the screening, has been used to describe liquid metals@3#,
liquid metallic hydrogen and helium@4#, screening of ther-
monuclear reaction rates in astrophysical settings@5#, and
plasmas and colloidal suspensions@6#. The Yukawa system
is typically used as a model for the heaviest ion compon
under the assumption of linear, adiabatic screening by
background particles. The Yukawa system is chosen bec
of its generality: the dimensionless coupling and screen
parameters are chosen to match the particular plasma co
tions. For dusty plasmas, the coupling refers to the d
grains and the screening to the hot background electron
plasma. For ultracold plasmas, the coupling refers to the c
ions and the screening to the partially degenerate elec
gas. Similar arguments hold for other situations.
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Despite the ubiquity of Yukawa-like systems, less
known relative to the one-component plasma~OCP!, for
which the interparticle interaction is of the pure Coulom
(k50) form G/r . It is possible to take advantage of th
situation by using the known properties of the OCP as
reference for the properties of screened systems. Such a
respondence has been carried out for dense matter by G
and Hansen@7# using both thermodynamic perturbatio
theory and a variational method based on the Gib
Bogolyubov inequality~GBI!. In their work, the screening
was specifically described by the zero-temperature Lindh
dielectric function with local field corrections. Sensitivity t
the form of the screening function was subsequently inve
gated by Iyetomi, Utsumi, and Ichimaru@8#. The hard-sphere
~HS! system can also be used as the reference, although
known that the OCP system gives a better~lower upper
bound! estimate of the free energy@7,9#. An advantage of
using the HS system, however, is that analytic results can
obtained@9–11#. Here a combination of both reference sy
tems is used. First, the HS reference system is used
reference for the Yukawa system. Then, an OCP refere
system is found by ensuring that the OCP reference has
same HS packing fraction as the Yukawa system. T
method has the advantages that the model potential is q
general, the results are analytic and require only solution
transcendental equations, the OCP limit is an exact limit,
the generalization to mixtures is straightforward. The m
disadvantage is that it is not easy to rigorously assign
accuracy to the procedure, although accuracy can be es
lished a posteriori with simulation data. The final result i
then used to calculate the freezing transition of the Yuka
fluid and the shear viscosity.

II. HARD-SPHERE REFERENCE

Consider a Yukawa system with fixed volumeV, number
of particlesN5nV, and temperatureT51/b. The Yukawa
interparticle interaction energy is taken to be of the form~1!,
whereG is assumed to be the same for all particles. The to
excess energyUY5( i , j

N uY(r i j )1Ubg of the Yukawa system
includes all pairwise contributions, as well as interactio
involving a neutralizing backgroundUbg . Now, consider a
reference HS system with hard-sphere diameters, packing
4115 ©2000 The American Physical Society
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fraction h5pNs3/(6V), and interparticle interaction en
ergy

buHS~r !5H `, r ,2h1/3

0, r .2h1/3,
~2!

with the same macroscopic parameters$N,V,T%. For a given
configuration, the excess energy of the HS assembly is
UHS5( i , j

N uHS(r i j ).
In terms of the excess energies, the excess Helmholtz

energies for the two systems are

bFY
(ex)~G,k!52 lnF E d3Nr

VN
e2bUYG , ~3!

bFHS
(ex)~h!52 lnF E d3Nr

VN
e2bUHSG . ~4!

From the GBI@12#, we know these free energies satisfy

FY
(ex)~G,k!<FHS

(ex)~h!1^UY~G,k!2UHS~h!&HS1F0 ,
~5!

where ^•••&HS refers to an ensemble average over the
distribution function. The quantityF0 contains all structure-
independent terms, which do not play a role here. After s
plification this becomes

FY
(ex)~G,k!/~NT!<

h~423h!

~12h!2
1

3G

2 E
0

`

drre2kr

3@gHS~h,r !21#1F0 , ~6!

where the approximate Carnahan-Starling@13# HS excess
free energy has been used. The integral is over the h
sphere radial distribution functiongHS(h,r ) and can be done
analytically in the Percus-Yevick approximation@14# to yield

E
0

`

dr re2kr@gHS~r !21#54h2/3@G~2h1/3k!2~2h1/3k!22#,

~7!

where

G~x!5
xH~x!

12h@H~x!2I ~x!ex#
~8!

with

H~x!512h@x~11h/2!12h11#,

I ~x!5~12h!2x316h~12h!x2118h2x212h~112h!.
~9!

The right-hand side of Eq.~6! can now be minimized with
respect toh for fixed $G,k% to yield the optimal HS packing
fraction h5h(G,k). Note that this procedure contains th
OCP as the special casek50.

Solutions of the variational procedure were found fork
50,1,2,3 andG512180; these solutions are shown in Fi
1. Qualitatively we see that the weaker screening cases
en

ee

S

-

d-

or-

respond to larger packing fractions. Calculations were a
performed fork50.25,0.5,1.5,2.5,3.5 and the full set of s
lutions for G.1 was fit by the form

h5a~k!1
b~k!ln~G!

11c~k!ln~G!
, ~10!

where

a~k!50.025520.0683k10.0267k220.003k3,

b~k!50.107 exp~20.143k20.105k2!,

c~k!520.11610.134 exp~20.19k20.184k2!. ~11!

It is also useful to compare Eq.~10! to previous results,
most of which are for the OCP (k50) limit. In that limit we
find from Eq.~10! that the OCP-HS correspondence is giv
by

Gocp5expF h20.0255

0.10720.018~h20.0255!G , ~12!

whereas the OCP analytic result of Stroud and Ashcroft~SA!
@10# is

Gocp
SA 52h1/3

~22h!~112h!2

~21h!~12h!5
. ~13!

We found that over the rangeh50.120.6 (Gocp'22300),
the quantity uGocp

SA 2Gocpu/Gocp
SA 3100% is less than 10%

The SA result for the OCP excess free energy in the str

FIG. 1. Hard-sphere packing fractionh versus Coulomb cou-
pling parameterG for a range of screening parametersk.
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coupling limit is known to agree with Monte Carlo resul
fairly well, and therefore we expect Eq.~12! to also give
similar agreement. Of course, Eq.~10! generalizes the OCP
case to the Yukawa case.

III. OCP-YUKAWA CORRESPONDENCE

Given known analytic forms for HS transport coefficien
Eq. ~10! can be used to estimate the same properties for
Yukawa system. However, it is known that the OCP provid
a better reference for the Yukawa system@7,9# and such a
correspondence is guaranteed to give the exactk50 limit,
whereas an HS reference does not give such a guarante
intuitive analytic mapping between the OCP and Yuka
systems is given by

Gocp5Ge2k, ~14!

which follows by simply replacing the average Coulomb e
ergy by its screened value. It is possible to use Eq.~10! to
develop a different mapping between the OCP and Yuka
systems that has somewhat better justification. The basic
is to find the Yukawa and OCP systems that have ident
packing fractions. Given a Yukawa system characterized
$G,k%, we first find the corresponding hard-sphere pack
fractionh that characterizes the hard-sphere system that
mimics ~as defined by the Gibbs-Bogolyubov inequality! the
Yukawa system. Now, given this hard-sphere system, we
then find which OCP system~as characterized byGocp) also
corresponds to this hard-sphere system; that is, we solv

a~0!1
b~0!ln~Gocp!

11c~0!ln~Gocp!
5a~k!1

b~k!ln~G!

11c~k!ln~G!
~15!

for Gocp , given $G,k%. The results of this calculation ar
shown in Fig. 2. Qualitatively we see that strongly screen
Yukawa systems are best modeled by relatively wea
coupled OCP systems, as expected. A fit to that data yie

Gocp5A~k!1B~k!G1C~k!G2, ~16!

where

A~k!5
0.46k4

110.44k4
,

B~k!51.01e20.92k,

C~k!523.73102519.031024k22.931024k2.
~17!

The functional forms for thek-dependent coefficients wer
chosen to give a good fit, with the form forB(k) chosen
specifically to compare with Eq.~14!. It is interesting that the
coefficientB(k) is quite similar to the intuitive guess of Eq
~14!. However, the other coefficients in Eq.~16! give impor-
tant corrections, as can be seen in Fig. 2, where the num
cal results~lines!, the simple estimate~14! ~boxes!, and the
fit ~16! ~crosses! are compared. We see that the predictio
based on this work give higher equivalentGocp values for a
given$G,k% than Eq.~14!; that is, Eq.~14! overestimates the
effects of screening relative to Eq.~16!. It should be men-
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tioned that the fit~16! is most accurate for moderate to stron
coupling (G.5). Since we know the intercept at smallG of
Eq. ~16! is actually zero, we can takeA(k)'0. Given the
smallness ofC(k) in that same limit, we see that Eq.~14!
may represent a reasonable approximate result forG'1.

IV. PHASE BOUNDARY AND SHEAR VISCOSITY

Although the above results can be justified by the use
the variational principle, the optimal result of the GBI do
not reveal how close the reference free energy is to the ac
free energy or the accuracy of the correspondence implied
Eq. ~15!. To quantify the accuracy, the result~16! and the
simple estimate of Eq.~14! are used to predict the liquid
solid phase boundary of the Yukawa fluid and to comp
with the simulation data of Hamaguchi,et al. @15#. The
phase boundary is found by solving for the critical coupli
strengthGc for variousk with Eq. ~15!,

Gc5expF 0.52952a~k!

b~k!2c~k!@0.52952a~k!#G ~18!

and with Eq.~14!,

Gc5171.8ek, ~19!

where the OCPGc is taken to beGc5171.8 to be consisten
with the simulation results. This procedure is motivated
noting that an HS packing fraction at freezing yields nea
the correct freezing point of the OCP@3# with Eq. ~12! or Eq.

FIG. 2. The OCP coupling parameter versus the Yukawa c
pling parameter for variousk values. The approximations given b
Eqs.~14! and~16! are shown for comparison. The fit~16!, shown as
crosses, reproduces the results fairly well. The simple model of
~14!, shown as boxes, gives a lower equivalent OCP coupling va
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~13!. We assume here that a similar relation holds betw
the OCP and Yukawa systems. The result is shown in Fi
where we see that the simple result of Eq.~14! predicts a
larger coupling strength for freezing than the simulations
dicate. The result~16! gives a considerable improvement
predicting the phase boundary, which suggests that Eq.~16!
can describe semiquantitatively the properties of the Yuka
system.

As an example of the application of the above results,
consider the shear viscosity of a strongly coupled Yuka
system. The shear viscosity plays an important role in
scribing dynamical properties, such as collective modes.
viscosity enters both as a damping mechanism and con
utes to the rigidity~high-frequency shear modulus! of the
system. It therefore enters as a parameter in such theo
which have been recently applied to dusty plasmas@16,17#.
Because of the lack of information on the Yukawa viscos
Kaw and Sen@17# were forced to use the OCP viscosity. Th
shear viscosity will be denoted here byh* to distinguish it
from the packing fractionh; all viscosities are in dimension
less units in terms of the viscosityh05nMvpr s

2 . We use the
available analytic fit to the OCP viscosity given by Walle
born and Baus@18# to ensure that the OCP limit is an exa

FIG. 3. Phase diagram of the Yukawa system in the$G,k%
plane. The liquid-solid phase boundary is shown as predicted by
simple estimateG5171.8 exp(k) ~top line!, the solution of Eq.~18!,
and the simulation results of Hamaguchiet al. ~line with circles!.
The results of this work are seen to give the phase boundary f
well considering the simplicity of the theory.
n
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limit. Their result, which agrees well with simulation resul
@19#, can be expressed as

h* 5lI 11
~11lI 2!2

lI 3
, ~20!

where

l5
4p

3
~3Gocp!

3/2,

I 15~180Gocpp
3/2!21,

I 25
0.4922.23Gocp

21/3

60p2
,

I 350.241
Gocp

1/9

p3/2
. ~21!

Together with Eq.~16!, these equations represent a proc
dure for computing the Yukawa viscosity, as shown in F
4. The results have the expected behavior in that the vis
ity behaves like a weakly coupled system for strong scre
ings. Note that the viscosity minimum has moved to ab
G'140 fork53, where it occurs atG'8 for the OCP case
For large couplings ofG'180, we see that using an OC
estimate for the viscosity overestimates the viscosity
nearly a factor of 4.

he

ly

FIG. 4. The viscosity versusG for various values ofk. The k
50 case is the Wallenborn-Baus OCP result and the remain
curves are the corresponding Yukawa estimates based on Eq.~15!.
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V. CONCLUSION

An analytic correspondence between the OCP
Yukawa systems has been given. The correspondence
achieved by using the HS system as a reference for e
system and ensuring an identical HS packing fraction
both systems. The accuracy of this procedure has b
shown by comparing a prediction of the freezing transit
with simulation data. The result is shown to be superior
the intuitive guessGocp5G exp(2k). The final result was
used to compute the shear viscosity using the OCP ana
fit of Wallenborn and Baus. It was seen that screening mo
the viscosity minimum to large coupling strengths a
L.
d
as
ch
r
en

o
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thereby reduces the viscosity at strong couplings relative
the OCP estimate. This reduction can have important con
quences on the damping of collective modes and the ons
shear waves that are dependent on the rigidity of the sys

The method presented here is easily extended to o
properties for which expressions are known for the OC
General approximate relations, such as the Einstein rela
between the diffusion coefficient and viscosity, can also
used to give estimates for some properties. Because of
simplicity of the theory, the same method can be easily
plied to mixtures for which the HS expressions are alrea
known @11#.
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